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Abstract
In this paper, a generalized nonlinear Schrödinger–Maxwell–Bloch model
with variable dispersion and nonlinearity management functions, which
describes the propagation of optical pulses in an inhomogeneous erbium-
doped fiber system under certain restrictive conditions, is under investigation.
We derive the Lax pair with a variable spectral parameter and the exact
soliton solution is generated from the Bäcklund transformation. It is observed
that stable solitons are possible only under a very restrictive condition for
the spectral parameter and other inhomogeneous functions. For various
forms of the inhomogeneous dispersion, nonlinearity and gain/loss functions,
construction of different types of solitary waves like classical solitons,
breathers, etc is discussed.

PACS numbers: 42.81.Dp, 42.65.Tg, 78.20.Bh

1. Introduction

In recent years, the investigation of the nonlinear dynamics of inhomogeneous systems has
attracted special attention because these systems are considered to be more realistic than their
corresponding homogeneous counterparts. Optical fiber solitons are considered to be the
most important milestone on the path of communication technology. This is because optical
solitons are formed as a result of a perfect balance between the group velocity dispersion
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(GVD) and the nonlinear effect, which are considered to be the major problems in high-
speed optical fiber communication. The GVD causes the temporal broadening of the optical
pulse due to the frequency dependence of the index of refraction. When an intense optical
pulse is propagated through a silica fiber, the medium tends to behave nonlinearly because
of the intensity-dependent refractive index n = n0(ω) + n2|E|2, and the phase of the pulse
gets modulated which is called self-phase modulation (SPM) [1]. An optical pulse which
experiences both these effects is governed by the nonlinear Schrödinger (NLS) equation.
However, for an inhomogeneous fiber, a generalized inhomogeneous nonlinear Schrödinger
equation (GINLSE) model is considered to be the most important realistic and universal
nonlinear model.

The propagation of the optical solitons in an ideal fiber is governed by the nonlinear
Schrödinger (NLS)-type equations. To avoid the problems caused by the electronic amplifiers,
all-optical communication systems are in vogue now and erbium-doped fiber amplifiers
(EDFA) are widely used for this purpose. When erbium (Er) is doped with the core of
the optical fibers, then the nonlinear wave propagation can have both the effects due to
silica and Er impurities. Er impurities provide the self-induced transparency (SIT) effect
to the optical pulse whereas the silica material gives the NLS soliton effect [2, 3]. Erbium
is selected because the energy difference between the two levels is nearly equal to that of
the frequency at which present day optical signals are transmitted. The coherent interaction
effect is due to resonant absorption which can balance the optical losses in the fiber medium.
The pulse propagation in erbium-doped two-level resonant atoms is called SIT soliton-type
pulse propagation. In 1967, McCall and Hahn [4] described a special type of lossless
pulse propagation in two-level resonant media. They showed that if the energy difference
between the two levels of the media coincides with the frequency of the optical signal,
then coherent absorption takes place and the medium becomes optically transparent to
that particular wavelength. In erbium-doped fibers, the resultant solitons are collectively
called nonlinear Schrödinger–Maxwell–Bloch (NLS-MB) solitons. This type of soliton
pulse propagation was theoretically shown for the first time by Maimistov and Manykin
[5] in 1983 and many other results were also reported on these NLS-MB-type fiber
systems [6–12]. Nakazawa et al [13, 14] experimentally observed the coexistence of NLS
solitons and SIT solitons in erbium-doped resonant fibers. In [2, 3, 15], the possibility of
coexistence of NLS and SIT solitons with higher order linear and nonlinear effects has been
investigated.

In recent years, the problem of nonlinear wave propagation in inhomogeneous media
has been found to be of great interest which has a wide range of applications. The
inhomogeneity in the fiber mainly arises due to two factors: (i) the variation in the lattice
parameters of the fiber medium and (ii) variation of the fiber geometry [16]. Of late, the
effect of these inhomogeneities on the propagation of solitary wave pulses in an optical fiber
has produced considerable activity among researchers. In particular, for the theoreticians,
the question is to analyze the way in which the behavior of solitons is affected and to
find out whether these inhomogeneous systems are still integrable like their homogeneous
counterparts.

However, there are a number of factors which affect the dynamics of optical solitons and
the conditions for the generation of optical solitons in real fibers. For instance, some important
factors are the dissipative losses leading to the damping of soliton amplitude without changing
its velocity [17], higher order dispersion effects [18], various inhomogeneities of fiber [19],
alternating conditions of exploitation of optical lines, etc. Keeping this in mind, in the present
work, a most generalized inhomogeneous NLS-MB system is proposed and analyzed for the
solitary wave propagation.
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2. The generalized inhomogeneous nonlinear Schrödinger–Maxwell–Bloch
(GINLS-MB) model

The solution of the NLS-type equation in an inhomogeneous medium is of great importance for
investigating wave propagation in various types of physical situations such as plasma physics,
nonlinear optics, condensed matter, and so on. Serkin et al introduced the GINLS equation
and obtained the one- and two-soliton solution through the Lax pair technique [20]. In this
work, we have modified the GINLS equation to suit with erbium-doped fibers, wherein the
effect of SIT should be included and the governing equation is now called the GINLSE-MB
equation of the following form:

i Qz +
D(z)

2
Qtt + R(z)|Q|2Q + F1(z, t)Q + F2(z)Q − 2iA(z)〈p〉 = 0

(1)
pt = i p[2ω − tθ ] + 2Qη ηt = − R(z)

D(z)
(p∗Q + pQ∗)

where Q(z, t) is the complex envelope of the field; F1(z, t) is related to time-dependent phase
modulation; F2(z) is the Wronskian of D(z) and R(z); A(z) is the parameter accounting for
the interaction between silica and doped atoms; p(z, t) is the measure of the polarization of
the resonant medium; η(z, t) denotes the extent of the population inversion, which are given
by ν1ν

∗
2 and |ν1|2 − |ν2|2 respectively, ν1 and ν2 being the wavefunctions of the two energy

levels of the resonant atoms; D(z) represents the group velocity dispersion (GVD) function;
R(z) is the nonlinearity management function; and θ(z) is the phase shift parameter [20]. The
angular bracket represents averaging over the entire frequency range. Thus

〈p(z, t)〉 =
∫ ∞

−∞
p(z, t;ω)h(ω) dω (2)

∫
h(ω) dω = 1 (3)

where h(ω) is the uncertainty in the energy levels.
In equation (1), if we take D(z) = R(z) = A(z) = constant and α = 0, then the system

reduces to the well-known integrable NLS-MB equation and the details of these investigations
have already been discussed in the introduction.

The above system is the most general one to describe the optical pulse propagation in an
inhomogeneous nonlinear dispersive doped fiber. In this paper, this system is solved by means
of the Lax pair and Bäcklund transformation (BT) technique, as described below.

3. Lax pair

In this section, we aim to generate the soliton solutions with the help of the associated Lax
pair and Bäcklund transformation. Here, we modify the Lax pair for the GINLS system
proposed by Serkin et al [20] to be suitable for the GINLS-MB system. By applying the
AKNS formalism, we can construct the linear eigenvalue problem for equation (1) as follows:

ψt = Uψ, ψz = V ψ (4)

where U and V are

U =
(−iλ q

−q∗ iλ

)
(5)
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V = i

(
1
2Dq q∗ − αt D

(
1
2qt − i θtq

)
D

(
1
2q∗

t + iθtq∗) − 1
2Dq q∗ + αt

)
− iλD

(
θt iq

−iq∗ −θt

)

− iλ2D

(
1 0
0 −1

)
+

iA(z)

(λ + ω)

(
η′ −p′

−p∗′ −η′

)
(6)

where

q(z, t) =
√

R

D
Q(z, t) exp

1

2
(i t2θ), (6a)

p′(z, t) =
√

R

D
p(z, t) exp

1

2
(i t2θ), (6b)

and

η′(z, t) = η(z, t).

Equation (1) can be obtained from the compatibility condition Uz − Vt + [U,V ] = 0, if we
assume that the inhomogeneous parameters satisfy the following conditions:

F1(z, t) = −
[

2tα +
t2

2

dθ

dz
+

D

2
(iθ − t2θ2)

]

F2(z) = i

2

[
1

R

dR

dz
− 1

D

dD

dz

]

θ(z) = −W [R(z),D(z)]

D(z)2R(z)

W [R(z),D(z)] = RDz − DRz.

(6c)

It should be mentioned here that the constraints imposed on the inhomogeneous parameter
by equation (6c) are difficult to be materialized in a real optical fiber. However, these
constraints are necessary to obtain a soliton solution through the Lax pair and a comprehensive
analysis of inhomogeneous fibers with realistic parameters could be carried out only by
numerical methods which is outside the scope of this work. The compatibility condition is
satisfied if and only if λ satisfies the following relation:

λ = e
∫ z

0 D(z′)θ(z′) dz′
(

λ(0) +
∫ z

0
e− ∫ z

0 D(z′)θ(z′) dz′
α(z) dz′

)
. (7)

From the Lax pair, soliton solutions can be generated by using the auto-Bäcklund
transformation method as shown below.

4. Bäcklund transformation

Bäcklund transformation (BT) allows one to generate multisoliton solutions of nonlinear
evolution equations [6]. We have derived the Bäcklund transformation from the time evolution
equations of the eigenfunctions. To obtain the BT of equation (1), let us write down
equation (4) in the Riccati form. By introducing new variables (pseudo potentials),

	 = ψ1

ψ2
(8)

so that the spatial and temporal linear eigenvalue problems reduce to the Riccati equations:

	t = q − 2iλ	 + q∗	2

	z = −2iαt	 − 2iλDθt	 − 2iλ2D	 +
2iA(z)	

(λ + ω)
.

(9)
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Similarly, defining 	′ = ψ ′
1

ψ ′
2

will satisfy the equations similar to equation (9). On choosing

	′ = 1
	∗ , and after some mathematical manipulation, we obtain

q ′ − q = −4γ	

(1 + |	|2) (10)

where the primed quantities correspond to N-soliton solutions and unprimed quantities
correspond to (N−1) soliton solutions, and λ(0) = μ + iγ . To construct the soliton solution of
equation (1), we start with the zero soliton solution q(0) = 0, p = 0 and η = ±1 (pure states).
By substituting the above conditions in the spatial and temporal eigenvalue problems, the
explicit form of one-soliton solution is obtained. This procedure can obviously be continued
and it furnishes in a recursive manner all the higher order soliton solutions, and the associated
wavefunction can also be generated. By using Bäcklund transformation, the single soliton
solution of the GINLS-MB equation is obtained as follows:

Q(z, t) =
√

D(z)

R(z)

2γ√
σ

sec h(f1) exp(−iξ1) (11)

where f1 and ξ1 are

f1 = 2γ t +
∫ z

0

(
4μγD + 2tDθγ +

2Aγ

γ 2 + (μ − ω)2

)
dz + δ1

ξ1 = 2μt +
t2θ

2
+

∫ z

0

(
2μ2D − 2γ 2D + 2tα + 2Dθtμ − 2A(μ − ω)

γ 2 + (μ − ω)2

)
dz + δ2

where δ1 and δ2 are independent of both z and t. In equation (11), if we take D(z) = R(z) =
A(z) = constant and α = 0, then the solution becomes the NLS-MB soliton solution reported
earlier. μ and γ are the velocity and amplitude parameters of the soliton pulse, respectively.
Once the one-soliton solution is known, it is possible to generate multisoliton solutions
in a systematic way, but for inhomogeneous systems, this approach is too complicated.
At this juncture, it should be mentioned that by using suitable transformation, many
of the integrable inhomogeneous equations have been transformed to their corresponding
homogeneous counterparts. However, because of the complexity of our problem, we are not
able to find such a transformation for our case.

Having obtained the soliton solution of equation (1), our next aim is to analyze the impact
of dispersion and nonlinear management by considering various forms for both GVD and
nonlinearity parameters as the functions of z. Such an approach may find fruitful applications
in what can be called dispersion–nonlinearity-managed (DNM) soliton systems.

5. Results and discussions

To study the pulse propagation characteristics, we can design the optimal soliton propagation
systems by appropriately choosing the different forms of distributed parameters according to
the specific problem. With the entry of dispersion management, the GVD coefficient is no
longer a constant, but a function of the propagation distance (z). It is a well-known fact that
when the group velocity dispersion is varied even slightly, the behavior of the pulse changes
drastically from its regular one. The underlying principle of soliton dispersion management
is the robustness of optical solitons. The important idea in the DM soliton systems is to
minimize the path average dispersion while maintaining local dispersion. This can be achieved
by periodically inserting fiber Bragg gratings with opposite dispersion along the transmission
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line. Pulse compression is the other interesting area where the effect of inhomogeneities
effectively reduces the pulse width. The strong dispersion management technique offers the
possibility of controlling fiber nonlinearity and suppressing specific nonlinear effects such
as the self-phase modulation and inter-channel crosstalk in wavelength-division-multiplexed
fiber systems [21].

Here, we consider some important systems that are currently being discussed in the
literature and also some new systems for which we get some exotic solitons like boomerang
solitons, phase-shifting solitons, reported for the first time for bright solitons.

5.1. Periodically distributed amplification system

Of late, researchers are focusing on periodic distributed systems because of their
potential applications in long-distance dispersion-managed soliton communication systems.
Equation (1) includes mainly two arbitrary distributed functions D(z) and R(z). Thus, by
choosing different forms for them, one can analyze various solitary wave propagations.
First, we consider a periodic distributed amplification system with a varying group velocity
dispersion parameter D(z) and a nonlinearity parameter R(z) as follows [22–25]:

D(z) = 1

d0
exp(kz)R(z) R(z) = R0 + R1 sin(gz) (12)

where R0, R1 and g are the parameters which define Kerr nonlinearity and d0 is the parameter
related to the initial peak power in the system, respectively. Here, for the sake of simplicity,
we take R0 = 0, d0 = 1 and g = 1. When k = 0, it corresponds to the case of fibers without
any loss or gain. When k < 0, it represents a dispersion-decreasing fiber, and similarly,
k > 0 corresponds to dispersion-increasing fibers. In this paper, we consider the above three
scenarios and analyze the corresponding solitary wave propagation in detail.

Case (i) k = 0. For this case, the Wronskian becomes zero for the above choice of parameters,
in which case, there is no gain or loss. Hence, the pulse does not suffer any broadening or
compression but an overall phase change due to the SIT effect induced by the doped atoms
and an oscillating behavior, known as snaking due to high intensity or velocity as shown in
figures 1(a)–( f ).

For the sake of simplicity, the function A(z) is assumed to be in the same form as that of
D(z). The propagation of solitary waves can be controlled by varying the numerical values of
the parameters involved. Initially, the parameter μ, which denotes the velocity of the solitons,
is varied from low to high, but the intensity is kept constant. At lower values of μ, one
could get classical solitons, but when it is increased, the solitons undergo slight oscillations
as shown in figure 1(b). When the velocity is increased further, periodic oscillations in time,
the resulting behavior is known as snaking, which occurs as depicted in figure 1(c). A similar
behavior is observed when the parameter γ , which is responsible for the intensity of the pulse,
is varied, keeping μ as a constant. If the intensity is changed from low values to high values,
the soliton changes its profile from its classic nature to snaking nature, which is clearly shown
in figures 1(d) and (e). It is also evident that the amplitude of the soliton does not change and
that the periodic oscillations occur at constant intervals, mainly because of the absence of gain
or loss.

The above plots were plotted by considering the form of A(z) to be the same as that of the
dispersion function. Next, we tried to analyze the solitary waves for various forms for A(z).
Our graphical simulations suggest that when A(z) is taken as a constant, there is an overall
phase shift for the pulse, as shown in figure 1( f ), but otherwise the soliton does not suffer from
any phase change at all in the absence of the SIT effect (A(z) = 0). Hence it can be concluded

6
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Figure 1. The evolution of the bright one-soliton solution (a) when the velocity is low (μ =
0.005) and (b) when the velocity is increased (μ = 3.5) with γ = 0.2. The evolution of the bright
one-soliton solution (c) when the intensity is low (γ = 0.1) and (d) when the intensity is increased
(γ = 0.6) with μ = 3.5. (e) The evolution of the bright one-soliton solution when the velocity is
high (μ = 3.5) and γ = 0.1 with A(z) = 1

d0
exp(kz)R(z), and ( f ) parameters same as plot (e), but

with A = 0.5.

that an overall phase shift for the soliton occurs only when A(z) is taken as a constant or zero
in which case the effect of SIT is absent. For other forms of A(z), it is observed that the profile
of the soliton is changed.

Case (ii) k < 0. This case stands for a dispersion-decreasing fiber. Similar to case (i), we
analyzed the propagation characteristics of the soliton by numerically controlling the different
physical parameters. Without any loss of generality, we have assigned the values of some
parameters as R0 = 0, d0 = 1 and g = 1. From the plots in figures 2(a) and (b), it is observed

7



J. Phys. A: Math. Theor. 42 (2009) 165101 A Mahalingam et al

-20

-10

0

10

20

t

0

10

20

30

Z

0
0.5

1

1.5
|Q|

2

|Q|
2

|Q|
2

|Q|
2

0

-10

0

10t

-20
-10

0
10

20
t

0

5

10

15

20

Z

0

0.1

0.2

0.3

-20
-10

0
10

20
t

(a) (b)

-20

0

20
t

0

5

10

15

Z

0

0.1

0.2

0.3

-20

0

20
t

-20

0

20
t

0

5

10

15

Z

0
0.2
0.4
0.6
0.8

-20

0

20
t

(c) (d )

Figure 2. The evolution of the bright one-soliton solution (a) when the velocity is low (μ =
0.005) and (b) when the velocity is high (μ = 0.6) with γ = 0.15. (c) The evolution of the bright
one-soliton solution when the intensity is high (γ = 0.15) and (d) (γ = 0.4) with μ = 7.6.

that the width of the pulse decreases as a result of negative chirping due to the negative value
of k. The periodic oscillations are more pronounced when the velocity or intensity of the pulse
is high as could be seen from figures 2(b) and (c), respectively. Here also an overall phase
shift is produced for constant A(z) as shown in figure 2(d).

Case (iii) k > 0. This condition is applied for dispersion-increasing fibers. Because of the
positive k value, the pulse gets broadened while propagating in the fiber medium. This could
be clearly seen from figures 3(a)–(d). The width of the pulse increases as the dispersion
parameter is now having a positive value when the distance increases. At lower velocities as
well as intensities, the periodic oscillations are absent and periodic oscillations are started for
higher values of γ as illustrated in figures 3(b) and (c). In this case also, an overall phase shift
is observed for constant A(z) as shown in figure 3(d). Note that the system parameter values
are the same as in case (ii).

5.2. Pulse compression

Let us consider the pulse compression of an optical pulse in a dispersion-decreasing optical
fiber. For this purpose, we assume that the GVD and the nonlinearity functions are distributed
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Figure 3. The evolution of the bright one-soliton solution (a) when the velocity is low (μ =
0.0001) and (b) when the velocity is high (μ = 8.2) with γ = 0.15. (c) The evolution of the bright
one-soliton solution when the intensity is high (γ = 0.005) and (d) γ = 0.3 with μ = 6.2.

in the form given as follows [21, 26–28]:

D(z) = d exp(−gz) R(z) = r exp(−kz) (13)

where d and g are related to GVD. r and k are the parameters which describe the nonlinearity.
For g < 0, solitons are compressed exponentially during the propagation. For g > 0 solitons
get broadened. For k = −g, width of the pulse remains unchanged. When g > 0 and k <

0, the system describes the dispersion-decreasing fiber. If we choose g < 0 and k > 0, the
system describes the dispersion increasing fiber. In figure 4(b), we can see that the soliton gets
compressed during its propagation due to k �= 0; the velocity and time shift of the soliton vary
with the dispersion distribution during the soliton pulse propagation. This property implies
that we can control the interaction between two solitons by suitably controlling each soliton
velocity.

5.3. Phase-shifting solitons

Next, we analyze the case when both dispersion and nonlinearity parameters vary linearly
with the distance z. Depending on the intensity and velocity parameters, we obtained different
kinds of solitons as exemplified in the figures of this section. Initially, the parameter A(z),
which represents the effect of doping, was kept constant. When the velocity parameter μ is
small, one can obtain classical soliton propagation which propagates without any shape or

9
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Figure 4. The evolution of the bright one-soliton solution (a) when A(z) = d exp(−gz) and
(b) when A(z) = 0 with d = r = 1, g = 0.03 and k = 0.025.

(a) (b)

(c) (d )

Figure 5. The evolution of classic one-soliton solution when A(z) = 1; R(z) = D(z) = z; α =
0.35; γ = 0.1; m = 0.005. (a) For small distances and (b) for longer distances. (c) Same as
(a) except m = 0.5. (d) Boomerang soliton with α = 0.35; γ = 0.045; μ = 1.

phase change up to a particular distance, but for the same parameters, the phase of the soliton
changes after traveling a long distance, as shown in figures 5(a) and (b), respectively. When
the distance is further increased, the soliton bends more and an increase in μ results in more
phase shift (figure 5(c)), while an increase in γ value, which is responsible for intensity, results
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in modulational instability. When the parameter A(z) is taken to be equal to z, it is observed
that more phase shift occurs.

In a recent paper [29], Li and Chen have obtained a particular type of dark solitons, which
they named as boomerang solitons. In the anomalous dispersion regime, one would get bright
solitons and we have found that such bright boomerang solitons can exist in inhomogeneous
optical systems as depicted in figure 5(d) when the GVD and SPM parameters are taken in the
form D(z) = R(z) = A(z) = a −bz with a = 1 and b = 0.15. Interestingly, these boomerang
solitons change their direction when D(z) = R(z) = A(z) = a + bz.

6. Conclusion

The optical solitons provoke a great interest theoretically and experimentally for their potential
applications like the optical fiber transmission system, ultrafast optical switches, pulse
compression, etc. With the consideration of varying dispersion and nonlinearity parameters,
we have considered a GINLS-MB equation which describes the propagation of optical pulses in
an inhomogeneous erbium-doped fiber. To obtain solitary wave solutions, the linear eigenvalue
problem has been constructed using the AKNS procedure and the Lax pair has been obtained.
The one-soliton solution has been obtained using Bäcklund transformation. The propagation
of the GINLS-MB soliton is analyzed for some specific cases for the inhomogeneous and
nonlinearity parameters.

With the consideration of varying dispersion and nonlinearity, equation (1) describes
the propagation of optical pulse in an inhomogeneous fiber. In practical case, the model
is of primary interest not only for the compression and amplification of optical solitons
in an inhomogeneous system, but also for the stable transmission of soliton pulses with
effective control of inhomogeneous parameters. It should be noted here that stable solitons
were observed for this system only under very restrictive conditions for the inhomogeneous
parameters involved, which would make it difficult in real fibers. It is our belief that in future
the difficulties in realizing a fiber with inhomogeneous parameters as described in this work
could be overcome in the manufacturing process itself. Analyses of inhomogeneous fiber
systems are still sporadic and hence this work is to be considered as a small but important step
in this direction.
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